NanoLuc® reporters provide high sensitivity and low background when imaged in superficial tissues and have also been used successfully to image events in deeper tissues. ATP-independence of these reporters allows in vivo monitoring of both intracellular and extracellular events.
In addition, several in vivo imaging strategies have been developed using NanoLuc®-based BRET reporters. These techniques utilize the bright NanoLuc® signal to excite red-shifted fluorescent acceptor proteins, creating enhanced deep tissue imaging solutions.
The Nano-Glo® Fluorofurimazine In Vivo Substrate (FFz) is an optimized reagent designed specifically for in vivo detection of NanoLuc® Luciferase, NanoLuc® fusion proteins or reconstituted NanoBiT® Luciferase. This aqueous-soluble reagent provides increased substrate bioavailability in vivo, leading to bright signals, and has handling requirements compatible with in vivo workflows. In addition, substrate specificity allows NanoLuc® and firefly luciferases to be used together for dual-luciferase molecular imaging studies, providing even more options for creating whole animal reporter models.