Don't see what you need?
Serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter, elicits a wide array of physiological effects by binding to several receptor subtypes, including the 5-HT2 family of seven-transmembrane-spanning, G-protein-coupled receptors, which activate phospholipase C and D signaling pathways. This gene encodes the 2C subtype of serotonin receptor and its mRNA is subject to multiple RNA editing events, where genomically encoded adenosine residues are converted to inosines. RNA editing is predicted to alter amino acids within the second intracellular loop of the 5-HT2C receptor and generate receptor isoforms that differ in their ability to interact with G proteins and the activation of phospholipase C and D signaling cascades, thus modulating serotonergic neurotransmission in the central nervous system. Studies in rodents show altered patterns of RNA editing in response to drug treatments and stressful situations. [provided by RefSeq, Jul 2008]
The information on this page was collected from publicly accessible databases, and is periodically updated. Promega makes no claims to accuracy, or ownership of these genes.
Gene products are often involved in multiple pathways and networks within a living cell. Learn more about other interacting partners.
Paste a protein or nucleic acid sequence in the box below to confirm that it matches this gene’s reference sequence(s). Click on a link under RELATED ORF CLONES to see how a sequence matches to an experimentally-validated ORF clone.
It appears that you have Javascript disabled. Our website requires Javascript to function correctly. For the best browsing experience, please enable Javascript.