- Gene Overview
- Interaction Network
- Sequence Verification
SELENON, selenoprotein N
-
This gene encodes a glycoprotein that is localized in the endoplasmic reticulum. It plays an important role in cell protection against oxidative stress, and in the regulation of redox-related calcium homeostasis. Mutations in this gene are associated with early onset muscle disorders, referred to as SEPN1-related myopathy. SEPN1-related myopathy consists of 4 autosomal recessive disorders, originally thought to be separate entities: rigid spine muscular dystrophy (RSMD1), the classical form of multiminicore disease, desmin related myopathy with Mallory-body like inclusions, and congenital fiber-type disproportion (CFTD). This protein is a selenoprotein, containing the rare amino acid selenocysteine (Sec). Sec is encoded by the UGA codon, which normally signals translation termination. The 3' UTRs of selenoprotein mRNAs contain a conserved stem-loop structure, designated the Sec insertion sequence (SECIS) element, that is necessary for the recognition of UGA as a Sec codon, rather than as a stop signal. A second stop-codon redefinition element (SRE) adjacent to the UGA codon has been identified in this gene (PMID:15791204). SRE is a phylogenetically conserved stem-loop structure that stimulates readthrough at the UGA codon, and augments the Sec insertion efficiency by SECIS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Dec 2016]
-
Gene Synonyms (CFTD, MDRS1, RSMD1, RSS, SELN, SEPN1, selenoprotein N, selenoprotein N, 1,)
- NCBI Gene ID:
57190
- Species:
Homo sapiens (Human)
-
UNIPROT ID#>>Q9NZV5
- View the NCBI Database
for this Gene »
Gene products are often involved in multiple pathways and networks within a living
cell. Learn more about other interacting partners.
selenoprotein N interacts with:
Paste a protein or nucleic acid sequence in the box below to confirm that it matches
this gene’s reference sequence(s). Click on a link under RELATED ORF CLONES to see
how a sequence matches to an experimentally-validated ORF clone.
|