

Plasmid and Protein Quantitation

Nucleic Acid and Protein Calculations.

An online calculator for these values is available at: www.promega.com/techserv/biomath/

Metric Prefixes

Prefix	Symbol	Factor
kilo	k	10 ³
centi	С	10-2
milli	m	10⁻³
micro	μ	10-6
nano	n	10 ⁻⁹
pico	р	10-12
femto	f	10-15
atto	a	10^{-18}
zepto	Z	10-21

Spectrophotometric Conversions

- 1 $\rm A_{260}$ unit of double-stranded DNA = $\rm 50\mu g/ml$
- 1 A_{260}^{-1} unit of single-stranded DNA = $33\mu g/ml$
- 1 $A_{260}^{=30}$ unit of single-stranded RNA = 40 μ g/ml

DNA Molar Conversions

1µg of 1,000bp DNA = 1.52pmol (3.03pmol of ends) 1µg of pBR322 DNA = 0.36pmol DNA 1pmol of 1,000bp DNA = 0.66µg

1pmol of 1,000bp DNA $= 0.66\mu g$ 1pmol of pBR322 DNA $= 2.8\mu g$

Formulas for DNA Molar Conversions

For dsDNA:

To convert pmol to µg:

pmol × N ×
$$\frac{660pg}{pmol}$$
 × $\frac{1\mu g}{10^6 pg}$ = μg

To convert µg to pmol:

$$\mu g \qquad \times \quad \frac{10^6 pg}{1 \mu g} \quad \times \quad \frac{pmol}{660 pg} \quad \times \qquad \frac{1}{N} \quad = \quad pmol$$

where N is the number of nucleotide pairs and 660pg/pmol is the average MW of a nucleotide pair.

For ssDNA:

To convert pmol to µg:

pmol × N ×
$$\frac{330pg}{pmol}$$
 × $\frac{1\mu g}{10^6pg}$ = μg

To convert µg to pmol:

$$\mu g \qquad \times \quad \frac{10^6 pg}{1 \mu g} \quad \times \quad \frac{pmol}{330 pg} \quad \times \qquad \frac{1}{N} \qquad = \quad pmol$$

where N is the number of nucleotides and 330pg/pmol is the average MW of a nucleotide.

Protein Molar Conversions

100pmol of 100kDa protein = $10\mu g$ 100pmol of 50kDa protein = $5\mu g$ 100pmol of 10kDa protein = $1\mu g$ 100pmol of 1kDa protein = $100\eta g$

Protein/DNA Conversions

1kb of DNA = 333 amino acids of coding capacity

37kDa protein10kDa protein

810bp DNA = 30kDa protein 1.35kb DNA = 50kDa protein 2.7kb DNA = 100kDa protein

average MW of

270bp DNA

an amino acid = 110 daltons

Dalton (Da) is an alternate name for the atomic mass unit, and kilodalton (kDa) is 1,000 daltons. Thus a peptide with a mass of 64kDa has a molecular weight of 64,000 grams per mole.