ACS Med. Chem. Lett.
7(5), 531–6.
Fragment-based discovery of a selective and cell-active benzodiazepinone CBP/EP300 bromodomain inhibitor (CPI-637).
2016
Taylor, A.M., Côté, A., Hewitt, M.C., Pastor, R., Leblanc, Y., Nasveschuk, C.G., Romero, F.A., Crawford, T.D., Cantone, N., Jayaram, H., Setser, J., Murray, J., Beresini, M.H., de Leon Boenig, G., Chen, Z., Conery, A.R., Cummings, R.T., Dakin, L.A., Flynn, E.M., Huang, O.W., Kaufman, S., Keller, P.J., Kiefer, J.R., Lai, T., Li, Y., Liao, J., Liu, W., Lu, H., Pardo, E., Tsui, V., Wang, J., Wang, Y., Xu, Z., Yan, F., Yu, D., Zawadzke, L., Zhu, X., Zhu, X., Sims, R.J., 3rd, Cochran, A.G., Bellon, S., Audia, J.E., Magnuson, S. and Albrecht, B.K.
Notes: Researchers set out to identify CBP/EP300 bromodomain inhibitors potent to both in vitro targets and targets in cellular target engagement assays. They developed a series of selective probes of CBP/EP300 bromodomains identified first by fragment screening. They next substituted and modified parts of the fragments to improve potency and selectivity.
To determine whether improvements in CBP bromodomain inhibition that were observed in their biochemical assay would translate to a cellular context, they used a bioluminescence resonance energy transfer assay, NanoBRET, where a small CBP/EP300 bromodomain inhibitor disrupted the interaction between a HaloTag-labeled histone and bromodomain conjugated to NanoLuc® Luciferase.
NanoBRET™ CBP/Histone H3.3 Interaction Assay (Cat.# N1850) and FuGENE® HD Transfection Reagent (Cat.# E2311) were used in the cell-based assay. (4717)
Expand Full Notes »