Don't see what you need?
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER). [provided by RefSeq, Jul 2008]
The information on this page was collected from publicly accessible databases, and is periodically updated. Promega makes no claims to accuracy, or ownership of these genes.
Gene products are often involved in multiple pathways and networks within a living cell. Learn more about other interacting partners.
Paste a protein or nucleic acid sequence in the box below to confirm that it matches this gene’s reference sequence(s). Click on a link under RELATED ORF CLONES to see how a sequence matches to an experimentally-validated ORF clone.
It appears that you have Javascript disabled. Our website requires Javascript to function correctly. For the best browsing experience, please enable Javascript.